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ABSTRACT
This article considers high-dimensional image-on-scalar regression, where the spatial heterogeneity of
covariate effects on imaging responses is investigated via a flexible partially linear spatially varying coef-
ficient model. To tackle the challenges of spatial smoothing over the imaging response’s complex domain
consisting of regions of interest, we approximate the spatially varying coefficient functions via bivariate
spline functions over triangulation. We first study estimation when the active constant coefficients and
varying coefficient functions are known in advance. We then further develop a unified approach for
simultaneous sparse learning and model structure identification in the presence of ultrahigh-dimensional
covariates. Our method can identify zero, nonzero constant, and spatially varying components correctly
and efficiently. The estimators of constant coefficients and varying coefficient functions are consistent
and asymptotically normal for constant coefficient estimators. The method is evaluated by Monte Carlo
simulation studies and applied to a dataset provided by the Alzheimer’s Disease Neuroimaging Initiative.
Supplementary materials for this article are available online.
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1. Introduction

In recent years, there has been explosive growth in the
number of imaging studies in medical research, thus, boosting
the investigation of “next-generation functional data” that
includes images and shapes (Wang, Chiou, and Muller 2016).
Functional data analysis (FDA) methods have been widely
studied in the literature, but most focus has been placed on
one-dimensional curves and functional data distributed on
rectangular domains; see Morris (2015), Ramsay and Silverman
(2005), Wang, Chiou, and Muller (2016), and references therein
for a comprehensive review of FDA. Little has been done on
the development of advanced statistical methods to analyze
multidimensional functional data (such as two-dimensional
or three-dimensional) or functional data over complex
domains.

In this article, we consider image-on-scalar regression with
imaging responses in a template and scalar predictors from
n subjects. Let � represent a domain of arbitrary shape of a
complex object, and let s = (s1, s2)

� denote a point in �.
Without loss of generality, in what follows, � is assumed to
be a compact set in R2. For subject i = 1, . . . , n, we observe
a real-valued imaging measure Yi(sj) at point sj ∈ � (j =
1, . . . , Ns) and scalar predictors Xik, k = 1, . . . , pn, such as age,
gender, height, environmental and genetic factors. For notation
simplicity, we write p instead of pn in the rest of the article,
even though the number of scalar predictors may grow with the
number of subjects. To characterize the relationship between
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imaging responses and scalar covariates, we consider the spa-
tially varying coefficient model (SVCM)

Yi(s) = μ0(s) +
p∑

k=1
Xikfk(s) + ηi(s) + εi(s),

i = 1, . . . , n, s ∈ �, (1)

where μ0 and f1, . . . , fp are unknown smooth functions;
η1, . . . , ηn characterize individual image variations, and are
independent and identical copies of a stochastic process with
mean zero and covariance function Gη(s, s′); ε1(s), . . . , εn(s)
are measurement errors, and independent and identical
copies of a random process with mean zero, and covariance
cov{εi(s), εi(s′)} = σ 2(s)I(s = s′). Each ηi is independent of εi,
and each ηi and εi are independent of Xik’s. In the following, we
assume both Xik’s and Yi(s)’s are centered by subtracting their
mean, so that EXik = 0 for all k = 1, . . . , p and EYi(s) = 0 for
all s ∈ �.

The SVCM in (1) is powerful for modeling the nonstationar-
ity of regression coefficients over space. Under this model, the
imaging response is associated with scalar covariates through
functional linear regression, but the regression coefficients can
vary from location to location across the response image and
are modeled as a nonparametric function of spatial coordinates.
Model (1) assumes that all the coefficients are spatially varying.
While in reality, some covariates may have homogenous effects
while others have heterogeneous effects across locations. If we
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can correctly identify the constant coefficients, it is possible to
improve the estimation efficiency of the SVCM by considering a
partially linear spatially varying coefficient model (PLSVCM), a
more parsimonious special case of the SVCM; see model (2) in
Section 2.

Our research on the SVCM and PLSVCM is related to works
on varying coefficient models (VCMs; see Hastie and Tibshirani
1993; Huang, Wu, and Zhou 2004; Tang et al. 2012; Jiang et al.
2013; Gu et al. 2014; Liu, Li, and Wu 2014) and partially linear
VCMs (PLVCMs; see Ahmad, Leelahanon, and Li 2005; Fan
and Huang 2005; Wang, Zhu, and Zhou 2009). While there is
a growing body of literature on statistical tools for univariate
smoothing in which the index variable is a scalar such as time,
there are far fewer works on how to estimate SVCMs where the
index variable s is two-dimensional. In a spatial regression set-
ting, Gelfand et al. (2003) proposed a Bayesian approach, which
modeled the spatially varying coefficient surface as a realization
from a spatial process assuming a certain prior distribution
of the coefficients. Another popular approach for estimating
the SVCM in spatial regression analysis is through bivariate
smoothing. For example, Fotheringham, Brunsdon, and Charl-
ton (2002) proposed the geographically weighted regression
(GWR) method, where the coefficient surface is locally esti-
mated at each location via weighted least-squares with some
distance-decay weights. Lu et al. (2009) extended the SVCM
to adaptively varying-coefficient spatiotemporal models to deal
with data that are observed irregularly over space and regularly
in time. The SVCM has also been applied to FDA to deal with
imaging response data. For example, in the image-on-scalar
regression setting for Model (1), Zhu, Fan, and Kong (2014)
proposed a local three-stage estimation method to fit the model
using adaptive weights. However, their method relies heavily on
estimating the spatial similarity and adaptive weights repeatedly,
so it is computationally intensive for analyzing large imaging
datasets. In addition, the local method also makes it difficult to
conduct variable selection as we do in Section 3.

Another challenge in analyzing biomedical imaging data is
the so-called “leakage” problem, which refers to the fact that
the methods perform poorly when used to smooth data over
complex domains. In many imaging studies, the objects (or
regions) of interest on the images are usually irregularly shaped.
Many conventional smoothing methods, such as kernel smooth-
ing (Zhu, Fan, and Kong 2014), tensor product smoothing
(Reiss and Ogden 2010), and wavelet smoothing (Morris and
Carroll 2006), often encounter the “leakage” problem because
they smooth inappropriately across boundary features (Ram-
say 2002; Wang and Ranalli 2007). To overcome the “leakage”
problem, we approximate the spatially varying coefficients in
the functional linear regression model by using the bivariate
splines over triangulation (BST; Lai and Schumaker 2007). Our
method not only efficiently incorporates spatial information,
but also preserves important features (shape and/or smooth-
ness) of imaging data. Furthermore, our method is able to
conveniently formulate a penalized function for sparse learn-
ing and model identification purposes, which cannot be easily
implemented through other adaptive or sequential smoothing
methods.

High-dimensional data occur very frequently in biomed-
ical imaging studies. For example, in imaging genetics, it is

of great interest to investigate how the effect of each genetic
factor changes under the influence of multiple environmental
variables, and in a typical gene-environment-wide association
study (GEWAS), the number of SNPs could be extremely large,
which poses a substantial challenge for applying SVCM and/or
PLSVCM directly. When implementing the PLSVCM, another
critical challenge lies in the identification of nonstationarity
because users generally do not have prior knowledge on which
coefficients are constant and which are varying over space.
Hence, there is a strong interest in identifying important risk
factors related to the imaging responses and in the meantime
finding a more parsimonious semiparametric model structure
that allows more efficient estimation. In this article, we first pro-
pose a BST-based estimator for the PLSVCM (with diverging p),
and establish its consistency and asymptotic normality. We then
propose a double-penalized approach for simultaneous sparse
learning and model structure identification (i.e., determination
of spatially varying vs. constant coefficients) in the presence of
ultrahigh-dimensional covariates. In addition, we derive model
selection consistency for the proposed method and show that it
possesses the oracle property when the dimension of covariates
exceeds the sample size.

We provide a new pathway to develop the methodology and
formal theory for imaging-on-scalar regression with ultrahigh-
dimensional predictors, in which the coefficient functions are
approximated using the BST approach. Compared with the
computationally expensive local smoothing methods (kernel,
local polynomial), BST is a global smoothing method and allows
easier implementation of piecewise polynomial representations
of various degrees and various smoothness over an arbitrary tri-
angulation. The BST approach was also used in Mu, Wang, and
Wang (2018), Wang et al. (2020), and Yu et al. (2019). However,
in these studies, either there was no covariate information or the
dimension of the covariate vector was fixed. Thus, the results
in these papers are not generally applicable to the SVCM or
PLSVCM with a diverging number of covariates.

To the best of our knowledge, the present article is the first to
develop theory and methodology for imaging-on-scalar regres-
sion in a high-dimensional setting. The SVCM and PLSVCM
models we consider here are in a functional regression frame-
work. The asymptotic analysis of such semiparametric models
in high-dimensional settings is more complicated than those
in the existing literature as we need to simultaneously deal
with an infinite dimension of the functional response, spatial
smoothing over a complex domain and ultrahigh-dimensional
covariates. Another notorious difficulty in our theoretical inves-
tigation is that the covariates in the linear part and those in the
spatially varying components could be dependent. To resolve
the dependence between covariates in the constant and varying
parts, we consider a projection of the covariates in the linear
part onto the varying coefficient functional space, and study the
properties of the projection onto the estimation space relative
to the theoretical or empirical inner products introduced in
Section 2.2; see Theorem 3.

The rest of the article is organized as follows. In Section 2,
we consider the “oracle” PLSVCM, in which the active constant
and varying index sets are treated as known. We adopt BST to
approximate the unknown functional coefficients. The details
of the estimation method for the “oracle” PLSVCM are given
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in Section 2.1, and the asymptotic results of the proposed esti-
mators are presented in Section 2.2. In Section 3, we describe
the double-penalized bivariate spline procedure for selecting
SVCMs when the dimension of covariates is high. Furthermore,
we show the consistency of estimation, selection and model
identification, and derive the asymptotic distribution of the
proposed estimators. Section 4 demonstrates the performance
of the proposed method through two simulation studies. In
Section 5, we present our empirical analysis of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data using the newly
proposed procedure. Finally, we make some concluding remarks
in Section 6. Proofs of the theorems, technical lemmas along
with additional simulation studies are relegated to the supple-
mentary materials.

2. PLSVCM and Its Estimation

Suppose the data consist of n individuals, and denote X(i) as the
covariates for the ith subject, that is, X(i) = (Xi1, . . . , Xip)�. The
observed measurements are (Yi(sj), X(i)) for the ith individual,
where {(Yi(s), X(i))}n

i=1 are independent copies of (Y(s), X). For
the scalar covariates Xik’s, let Ac and Av denote the index sets of
finite covariates with constant and varying coefficients, respec-
tively. We first study the estimation for the following partially
linear spatially varying coefficient model (PLSVCM) by assum-
ing that Ac and Av are known sets with finite cardinalities:

Yi(sj) =
∑

k∈Ac

Xikαk+
∑

k∈Av

Xikβk(sj)+ηi(sj)+εij, sj ∈ �, (2)

for i = 1, . . . , n, j = 1, . . . , Ns, where εij’s are independent
random errors. The analyses for the SVCM Model (1) with
ultrahigh-dimension p will be presented in Section 3. For model
identifiability, we assume that

∫
�

βk(s)ds = 0 to ensure that
there is no constant effect in the nonlinear function βk(s).

2.1. The Estimation Method

Our estimation is based on basis approximations using bivariate
splines over triangulations. The idea is to approximate the func-
tion βk(·) by splines which are piecewise polynomial bivariate
functions over a two-dimensional triangulated domain. We use
this approximation to construct least squares estimators of the
linear and nonlinear components of the model. In the following
subsections, we describe the background of triangulations and
introduce the spline estimators.

2.1.1. Triangulations
Triangulation is an effective strategy to handle data distribution
on irregular regions with complex boundaries and/or interior
holes. It has attracted substantial recent attention in many
applied areas, such as geo-spatial studies, numerical solutions
of partial differential equations, image enhancements, and com-
puter aided geometric design; see, for example, the recent com-
prehensive book of Lai and Schumaker (2007).

We use τ to denote a triangle which is a convex hull of three
points not located in one line. A collection � = {τ1, . . . , τN}
of N triangles is called a triangulation of � = ∪N

j=1τj provided
that the intersection of any pair of triangles in � is either empty,

a common vertex, or a common edge. In general, any kind of
polygon shape can be used for the partition of �. In this article,
we restrict our attention to triangulations of � because any
polygonal domain of arbitrary shape can be partitioned into
finitely many triangles. In the following, we assume that all sj’s
are inside triangles of �.

Given a triangle τ ∈ �, let |τ | be its longest edge length, and
let Rτ be the radius of the largest disk which can be inscribed in
τ . Define the shape parameter of τ as the ratio βτ = |τ |/Rτ .
When βτ is small, the triangles are relatively uniform in the
sense that all angles of triangles in the triangulation τ are rel-
atively similar. Denote the size of � by |�| := max{|τ |, τ ∈ �},
that is, the length of the longest edge of �. In the rest of the
article, we say a triangulation � is π-quasi-uniform if there is a
positive π such that � satisfies for all τ ∈ �, |�|/Rτ ≤ π .

2.1.2. Bivariate Spline Estimators
For a nonnegative integer r, let Cr(�) be the collection of all rth
continuously differentiable functions over �. Given a triangu-
lation �, let Sr

d(�) = {s ∈ Cr(�) : s|τ ∈ Pd(τ ), τ ∈ �} be a
spline space of degree d and smoothness r over the triangulation
�, where s|τ is the polynomial piece of spline s restricted on the
triangle τ , and Pd is the space of all polynomials of degree less
than or equal to d.

For any k = 1, . . . , p, let �k be the triangulation for the
kth component, and let {Bk
}
∈Jk be a set of bivariate Bernstein
basis polynomials forSr

d(�k), whereJk is the index set of all the
spline basis functions for the kth component. See Section S.1 of
the supplementary materials for a more detailed introduction of
the Bernstein basis polynomials. Then, we can write the func-
tion βk(s) ≈ ∑


∈Jk
Bk
(s)ck
 = B�

k (s)ck, where ck = (ck
, 
 ∈
Jk)

� is the spline coefficient vector, and Bk(·) = (Bk
(·), 
 ∈
Jk)

� is the vector of bivariate basis functions. To meet the
smoothness requirement of the splines, we need to impose
some constraints on the spline coefficients. The smoothness
conditions are linear. Let Hk denote the constraint matrix on the
coefficients ck, which depends on the smoothness parameter rk
and the structure of the triangulation and enforces smoothness
across shared edges of triangles; see Yu et al. (2019). Put all
smoothness conditions together to write Hkck = 0. Without loss
of generality, we assume B1(s) = · · · = Bp(s), and denote it as
B(s) = (B
(s), 
 ∈ J )�. Similarly, we assume H = H1 = · · · =
Hp. For practitioners, the construction of bivariate spline basis
B and the constraint matrix H can be easily done via our new R
package Basis. Then we can approximate the nonparametric
function βk(s), k = 1, . . . , p, using the normalized triangulation
splines as

βk(s) ≈ βnk(s) = B�(s)ck. (3)

For the ith subject, we observe a real-valued imaging measure
Yi(sj) at point sj ∈ � for j = 1, . . . , Ns. For example, sj =
(sj1, sj2)� could be the coordinates of a voxel center in a two-
dimensional cross-section of a three-dimensional brain image.

Given {(X(i), Yi(sj)) : i = 1, . . . , n, j = 1, . . . , Ns}, we
propose to minimize

n∑
i=1

Ns∑
j=1

{
Yi(sj) −

∑
k∈Ac

Xikαk −
∑

k∈Av

Xikβk(sj)

}2
. (4)
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We now approximate the varying coefficient functions by using
the bivariate basis functions introduced. Let Yij = Yi(sj),
then combining (3) and (4), we aim to minimize the following
objective function

Ln(α, c) =
n∑

i=1

Ns∑
j=1

{
Yij −

∑
k∈Ac

Xikαk −
∑

k∈Av

XikB�(sj)ck

}2
,

(5)

subject to Hck = 0. We remove the constraint via QR decompo-
sition of H�. By the QR decomposition, we have H� = QR =
(Q1 Q2)

(R1
R2

)
, where Q is an orthogonal matrix and R is an upper

triangle matrix, the submatrix Q1 is the first r columns of Q,
with r being the rank of H, and R2 is a matrix of zeros. Then,
the constrained optimization problem in (5) is reduced to the
following non-constrained optimization problem

min
α,γ

Ln(α, γ )

=
n∑

i=1

Ns∑
j=1

[
Yij −

∑
k∈Ac

Xikαk −
∑

k∈Av

Xik{B∗(sj)}�γ k

]2
,

where B∗(s) = Q�
2 B(s).

To ensure
∫
�

βk(s)ds = 0, we consider the normalized
bivariate spline basis of B∗(s) = {B∗

0(s), . . . , B∗
Jn
(s)}. For any


 ≥ 1, define the centered bivariate spline basis as B0

(·) =

B∗

(·) − B∗

0(·)
∫
�

B∗

(s)ds/

∫
�

B∗
0(s)ds, and rescale it by BN


 (·) =
B0


(·)/‖B0

(·)‖L2(�), 
 = 1, . . . , Jn, where ‖f ‖2

L2(�)
= ∫

�
f 2(s)ds

for any function f . At the risk of abusing the notation, below we
still use B
(·) instead of BN


 (·) to denote the normalized spline
basis to avoid creating too many new symbols. Denote B(s) =
{B
(s), 
 = 1, . . . , Jn} the collection of all the normalized basis
functions. We choose to use the normalized bivariate spline
basis functions to simplify the proof. The results in the following
sections still hold if centered but nonnormalized basis functions
are used.

Thus, one obtains the estimators α̂o
k , k ∈ Ac and γ̂ o

k, k ∈ Av,
by minimizing the following non-constrained objective func-
tion with normalized bivariate spline basis

Ln(α, γ ) =
n∑

i=1

Ns∑
j=1

{
Yij −

∑
k∈Ac

Xikαk −
∑

k∈Av

XikB�(sj)γ k

}2
.

(6)

Consequently, the estimator of βk(·) is β̂o
k (s) = B�(s)γ̂ o

k,
k ∈ Av.

2.2. Theoretical Properties

This section studies the asymptotic properties of the proposed
estimators. Throughout, we will use an index 0 to denote the
true parameter values and functions in model (2). To discuss
these properties, we introduce some notation of norms. For any
function g over the closure of domain �, denote

∥∥g
∥∥2

L2(�)
=∫

s∈�
g2(s)ds the regular L2 norm of g, and ‖g‖∞,� =

sups∈� |g(s)| the supremum norm of g. For directions sj, j =
1, 2, let Dq

sj g(s) denote the qth order derivative in the direction

sj at the point s. Let |g|υ,∞,� = maxi+j=υ ‖Di
s1 Dj

s2 g(s)‖∞,�
be the maximum norms of all the υth order derivatives of g
over �. Let W
,∞(�) = {

g : |g|k,∞,� < ∞, 0 ≤ k ≤ 

}

be the
standard Sobolev space. To avoid confusion, let (α0k, k ∈ Ac)
and (β0k, k ∈ Av) be the true parameter values below.

In the following, we first introduce some technical assump-
tions.

Assumption 1 (Model). For any k ∈ Av, the varying coefficient
function β0k ∈ Wd+1,∞(�) for an integer d ≥ 0.

Assumption 2 (Covariates). For any k = 1, . . . , p, there exists a
positive constant CX such that E|Xk|6 ≤ CX . The eigenvalues of
�X = E(XX�) are bounded away from 0 and infinity, where X
is a generic p-dimensional vector of all covariates.

Assumption 3 (Errors). For any i = 1, . . . , n, j = 1, . . . , Ns,
εij’s are independent with mean 0 and variance σ 2

ε ; the variance
function for ηi(s), Gη(s, s), satisfies 0 < cG ≤ Gη(s, s) ≤ CG ≤
∞ for any s ∈ �.

Assumption 4 (Resolution of images). If the location points s
are deterministic, we assume that sups∈� |QNs(s) − Q(s)| =
O(N−1/2

s ), where QNs(s) = N−1
s

∑Ns
j=1 I(sj1 ≤ s1, sj2 ≤ s2)

is the empirical cumulative distribution function and Q(s) is a
distribution with a positive continuous density.

Assumption 5 (Triangulations). The triangulation � is π-quasi-
uniform.

Assumption 6 (Size of triangulation). As Ns → ∞, n → ∞,
Ns|�|2 → ∞ and |�|2(d+1)n → 0.

Remark 1. Assumptions 1–3 are regularity conditions that are
commonly used in the high-dimension literature. Assump-
tions 4 and 5 are regular conditions that are widely used in
the triangulation bases literature. Assumption 6 describes the
requirement on the sample size n, the number of voxels Ns
on each individual image and the triangulation size relative
to n and Ns. Note that the size of the triangulation |�| plays
the role of smoothing parameter. Assumption 6 requires that
N−1/2

s � |�| � n−1/{2(d+1)}, which is a wide range given that
the number of pixels are typically much larger than the sample
size. It also suggests that the precise determination of the size of
triangulations is not a particular concern in terms of asymptotic
behavior. In Section 4.1, we give some discussion and advice on
how to choose the triangulation.

The following theorem establishes the consistency of the
proposed constant estimators and spline estimators for the
PLSVCM.

Theorem 1. Suppose that Assumptions 1–6 and model (2) hold.
Then

(i) ∑
k∈Ac

(̂αo
k − α0k)

2 = OP
{

n−1 + n−1N−1
s |�|−2 + |�|2(d+1)

}
,

(ii) ∑
k∈Av

‖β̂o
k − β0k‖2

L2(�) = OP
{

n−1 + n−1N−1
s |�|−2 + |�|2(d+1)

}
.
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Remark 2. Result (i) shows the rate of convergence of α̂o
k . Result

(ii) provides the global convergence rate of β̂o
k . The bias of α̂o

k
and β̂o

k is of order OP(|�|(d+1)) and the noise is of the order
OP(n−1/2 + n−1/2N−1/2

s |�|). Note that under Assumption 6,
Ns|�|2 → ∞ and |�|2(d+1)n → 0, as Ns → ∞ and n →
∞. Thus, α̂o

k is root-n consistent. Finally, the convergence rate
we obtained for the bivariate spline estimator β̂o

k is similar to
the one for the estimated univariate coefficient function in the
varying coefficient model for dense longitudinal observations in
Huang, Wu, and Zhou (2004).

Next we establish the asymptotic normal distribution for the
estimators of the constant coefficients. To overcome the obstacle
that covariates in the linear part and those in the spatially
varying components could be dependent, we consider a projec-
tion of covariates in the linear part onto the varying coefficient
functional space, and study the properties of the projection onto
the estimation space relative to the theoretical or empirical inner
product introduced. To be specific, for any index set I , denote
XI = (Xk, k ∈ I)�, and for any vector a, let aI = (ak, k ∈
I)�. To facilitate our discussion, we introduce the following two
inner products. Let x = (x�

Ac
, x�

Av
)�. Similarly, we write X in a

parallel fashion. For g(1)(x, s) and g(2)(x, s), define the empirical
inner product as

〈g(1), g(2)〉n,Ns = 1
nNs

n∑
i=1

Ns∑
j=1

g(1)(X(i), sj)g(2)(X(i), sj), (7)

and the theoretical inner product as

〈g(1), g(2)〉 = E
{∫

�

g(1)(X, s)g(2)(X, s)dQ(s)
}

, (8)

and denote the corresponding empirical and theoretical norms
as ‖ · ‖n,Ns and ‖ · ‖. For any k = 1, . . . , p, let xk(x, s) = xk
be a function of (x, s) that maps to the kth element of x. Define
F+ = {F(x, s) = ∑

k∈Av xkgk(s) :
∫
�

gk(s)dQ(s) = 0}. For any
k ∈ Ac, let

�k(·, ·) = arg min
F(·,·)∈F+

E
[∫

�

{Xik − F(X(i), s)}2dQ(s)
]

= arg min
F(·,·)∈F+

‖xk − F‖2 (9)

be the orthogonal projection of xk onto F+ relative to the
theoretical inner product in (8). To be more specific, we can
express �k(x, s) as

�k(x, s) =
∑

k′∈Av

xk′go
k,k′(s), (10)

for some go
k,k′(s) satisfying

∫
�

go
k,k′(s)dQ(s) = 0, for any k ∈ Ac.

Let �Ac(X, s) = {�k(X, s), k ∈ Ac}� and denote e(s, s′) =
Gη(s, s′) + σ 2(s)I(s = s′). Denote two matrices:

� = E
∫

�

{XAc − �Ac(X, s)}{XAc − �Ac(X, s)}�ds, (11)

�e = E
∫

�⊗2
{XAc − �Ac(X, s)}e(s, s′)

× {XAc − �Ac(X, s′)}�dsds′.

To make α0,Ac estimable at the
√

n rate, we need a condition
to ensure that XAc and XAv ⊗ B are not functionally related. In
addition, we need to assume that, for any k ∈ Ac, k′ ∈ Av, the
coefficient function go

k,k′(·) defined in (10) can be approximated
by functions in the bivariate spline space. So next, we introduce
the following two assumptions:

Assumption 7 (Covariance matrix). The matrices � and �e are
positive definite.

Assumption 8 (Coefficient functions). The coefficients functions
in (10), go

k,k′(·) ∈ Wd+1,∞(�), k ∈ Ac, k′ ∈ Av.

Theorem 2. Suppose Assumptions 1–8 and model (2) hold. If for
any k ∈ Ac, |Xik| ≤ Ck < ∞, then (Vc

n)
−1/2 (

α̂o − α0,Ac

) D−→
N(0, I|Ac|), as Ns → ∞ and n → ∞, where I|Ac| is an |Ac| ×
|Ac| identity matrix, and

Vc
n = −1

c c,e
−1
c , (12)

with c = (nNs)−1D�
c Dc, and c,e =

(nNs)−2D�
c diag{i,e}n

i=1Dc for Dc given in (S.16) and i,e ≡
e = {e(sj, sj′)}Ns

j,j′=1 = {Gη(sj, sj′)}Ns
j,j′=1 + diag{σ 2(sj), j =

1, . . . , Ns}.

Remark 3. For any i = 1, . . . , n, let μ̂i = {μ̂i(sj)}Ns
j=1, where

μ̂i(sj) = ∑
k∈Ac Xikα̂

o
k +∑

k∈Av Xikβ̂
o
k (sj). Note that by Lemma

S.15 in the supplementary materials, i,e can be consistently
estimated by ̂e = (n − |Ac|)−1 ∑n

i=1{Yi − μ̂i}{Yi − μ̂i}�.
Consequently, Vc

n can be estimated by V̂c
n = −1

c ̂c,e
−1
c ,

where ̂c,e = (nNs)−2D�
c diag{̂i,e}n

i=1Dc.

Theorem 2 provides the sample variance-covariance matrix
for the estimator α̂o. To derive the form of the asymptotic
covariance matrix of α̂o, we define the space Fn,+ = {F(x, s) =∑

k∈Av xkgk(s) : gk(s) ∈ Sr
d(�) ∩ H2}, where Sr

d(�) is spline
space for with degree d and smoothness r over triangulation
�, as defined in Section 2.1.2, and H2 is space for normalized
functions. For any k ∈ Ac, in a parallel fashion to (9), we define

�̂n,k(·, ·) = arg min
F(·,·)∈Fn,+

1
nNs

n∑
i=1

Ns∑
j=1

{Xik − F(X(i), sj)}2

= arg min
F(·,·)∈Fn,+

‖xk − F‖2
n,Ns (13)

as the orthogonal projection of xk onto Fn,+ relative to the
empirical inner product given in (7). Let �̂n and �n denote the
projection operator onto Fn,+ relative to the norm ‖ · ‖n,Ns and
‖ · ‖, respectively.

The next result shows that �̂n,k given in (13) is a consistent
estimator of �k defined in (9).

Theorem 3. Suppose Assumptions 1–8 and model (2) hold. For
any k ∈ Ac, we have ‖�̂n,k − �k‖2

n,Ns
= oP(1).

Remark 4. Theorem 3 can be used to derive the asymptotic form
of variance-covariance matrix Vc

n defined in (12). As shown in
Section S.4 of the supplementary materials, for k, k′ ∈ Ac, �c
has the (k, k′)th entry 〈xk − �̂n,k(xk, s), xk′ − �̂n,k′(xk′ , s)〉n,Ns ,
which is the empirical inner product of the projection residuals
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of xk, xk′ onto the space Fn,+. By Theorem 3, it converges to
〈xk−�k(xk, s), xk′ −�k′(xk′ , s)〉, which is the (k, k′)th entry of �,
in probability. Similarly, it can be shown that the (k, k′)th entry
of �c,e converges to the (k, k′)th entry of �e in probability.

The following corollary provides the asymptotic variance-
covariance matrix of the estimator α̂o, which is a direct result
of Theorems 2 and 3.

Corollary 1. Suppose Assumptions 1–8 and model (2) hold.
As Ns → ∞ and n → ∞, n1/2 (

α̂o − α0,Ac

) D−→
N(0, �−1�e�

−1), where � and �e are given in (11).

3. Sparse Model Identification and Learning
Estimator

In this section, we consider the SVCM in (1), and propose a
sparse model identification and learning estimation (referred to
as SMILE) procedure to simultaneously identify and estimate
the nonzero spatially varying and constant coefficients. There
have been several recent attempts to solve this problem for VCM
(see Noh, Chung, and Van Keilegom 2012; Wang and Kulasekera
2012; Lian, Lai, and Liang 2013; Li, Ke, and Zhang 2015; Lian,
Meng, and Zhao 2015; Chen, Bai, and Fung 2017). However, all
of them studied the VCM with time index or other univariate
indices. In contrast, our methodology is developed under the
SVCM framework with a bivariate index, which requires more
advanced tools to deal with the spatial index and corresponding
irregular domain. In addition, the works in the existing literature
can only be viewed as a case with n = 1 and N → ∞, and they
cannot handle functional responses. In our framework, both N
and n go to infinity, which poses challenges in both theory and
practice.

We evaluate the proposed selection and estimation method
in the high-dimensional setting, that is, we allow the dimension
p to be much larger than the sample size n. To decide if fk(s)
is varying, for each k = 1, . . . , p, we can decompose fk into a
constant and a nonlinear part: fk(s) = αk + βk(s), where βk(s)
is some unknown smooth nonlinear function. For model iden-
tifiability, we assume that

∫
�

βk(s)ds = 0, and this constraint
ensures there is no constant effect in nonlinear function βk(s).
Then, we can express model (1) as

Yi(s) =
p∑

k=1
Xikαk +

p∑
k=1

Xikβk(s) + ηi(s) + εi(s),

i = 1, . . . , n, s ∈ �. (14)

In the following, we say Xk has a constant effect on the
response if αk �= 0 and βk(s) = 0 for all s ∈ �, and
Xk has a varying effect on the response if βk(s) is not zero
for some s. Recall that our interest lies in selecting variables
with nonzero varying and constant effects. In practice, some
of the covariates may be irrelevant to the response variable,
with the corresponding varying-coefficient functions being zero
almost surely. So we identify the irrelevant covariates and esti-
mate the nonzero coefficient functions for the relevant ones
simultaneously. Explicitly, we define the following index sets
for X:

Active constant index set for X :Ac = {k = 1, . . . ,
p : αk �= 0, βk(·) ≡ 0},

Active varying index set for X :Av = {k = 1, . . . ,
p : βk(·) �= 0},

Inactive index set for X :N = {k = 1, . . . ,
p : αk ≡ 0, βk(·) ≡ 0}. (15)

Accordingly, we define the active index set for X asA = Ac∪Av.

3.1. Adaptive Group Lasso Estimator

The model selection problem for model (14) is equivalent to
the problem of identifying Ac and Av. To achieve this, given
{(X(i), Yi(sj)) : i = 1, . . . , n, j = 1, . . . , Ns}, we propose to
minimize

Ln(α, γ ; ρn1, ρn2)

=
n∑

i=1

Ns∑
j=1

{
Yi(sj) −

p∑
k=1

Xikαk −
p∑

k=1
XikB�(sj)γ k

}2

+
p∑

k=1
pρn1(|αk|) +

p∑
k=1

pρn2(‖γ k‖), (16)

where ‖γ k‖ is the Euclidean norm of γ k, and pρn1 (·) and
pρn2 (·) are penalty functions chosen as adaptive lasso penalty
functions. To be specific, we choose pρn1(|αk|) = ρn1wc

n,k|αk|,
and pρn2(‖γ k‖) = ρn2wv

n,k‖γ k‖, where wc
n,k = |̃αk|−1 and

wv
n,k = ‖γ̃ k‖−1, with α̃k and γ̃ k being some consistent initial

estimators for αk and γ k, respectively; ρn1 and ρn2 are regular-
ization parameters controlling the amount of shrinkage, and ρn1
and ρn2 → ∞ as Ns → ∞ and n → ∞. Details regarding
the choice of initial estimators α̃k and γ̃ k can be found in the
discussion about Assumption 12 in Section 3.2.

By minimizing (16), we obtain the estimator α̂k and γ̂ k, and
consequently, the estimator of βk(·) is β̂k(s) = γ̂ �

k B(s), k =
1, . . . , p. Therefore, we obtain the estimator of fk(·) as follows:
f̂k(s) = α̂k + B�(s)γ̂ k, k = 1, . . . , p.

Then, the model structure selected is defined by

Âc = {
k : |̂αk| �= 0, ‖γ̂ k‖ = 0, 1 ≤ k ≤ p

}
,

Âv = {
k : ‖γ̂ k‖ �= 0, 1 ≤ k ≤ p

}
,

N̂ = {
k : |̂αk| = 0, ‖γ̂ k‖ = 0, 1 ≤ k ≤ p

}
. (17)

3.2. Technical Assumptions

This section studies the asymptotic properties of the proposed
penalized estimators. In the following, we first introduce some
technical assumptions.

Assumption 9 (Model). The numbers of nonzero components
|Ac| and |Av| are fixed; there exist constants cα > 0 and cβ > 0
such that mink∈Ac |α0k| ≥ cα , and mink∈Av ‖β0k‖L2(�) ≥ cβ .

Assumption 10 (Covariates). There exists a constant cX such that
|Xk| < cX with probability one, for k = 1, . . . , p.
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Assumption 11 (Errors). The εi(·) is independent square-
integrable random process, and εi is sub-Gaussian with variance
proxy σ 2, that is, E{exp(t�εi)} ≤ exp(σ 2/2), for any ‖t‖2 =
1 and some σ > 0. Each component of {η(s) : s ∈ �},
{η(s)η(s′)� : (s, s′) ∈ �2} and {Xη(s) : s ∈ �} are Donsker
classes.

Assumption 12 (Initial estimators). The initial estimators satisfy
that rnα max

k/∈Ac
|̃αk| = OP(1), rnγ max

k/∈Av
‖γ̃ k‖ = OP(1), rnα ,

rnγ → ∞; and there exist positive constants bα and bγ such that
Pr(min

k∈Ac
|̃αk| ≥ cαbα) → 1 and Pr(min

k∈Av
‖γ̃ k‖ ≥ cγ bγ ) → 1.

Assumption 13 (Parameters for consistency). Suppose that√
nN2

s log(p)

ρn1rnα

+
√

nN2
s log(pJn)

ρn2rnγ

+ nNs|�|d+1

ρn1rnα ∧ ρn2rnγ

= o(1).

ρ2
n1 + ρ2

n2
nN2

s
= o(1),

n
J(d+1)
n log(pJn)

= o(1).

Assumptions 9–11 are regularity conditions that are com-
monly used in the high-dimension literature. To obtain the
selection consistency of the proposed method, we need an
order requirement for a general initial estimator; see Assump-
tion 12. Theorem S.1 in the supplementary materials demon-
strates that the group LASSO estimator (Yuan and Lin 2006)
obtained from (S.20) satisfies Assumption 12 under some weak
conditions; specifically, if the tuning parameters satisfy ρ̃2

n1 +
ρ̃2

n2 � nN2
s log(p), then the consistent rates for the group

LASSO estimator in Assumption 12 have order rnα � rnγ =
O{√n/ log(p)}. Thus, we recommend using the group LASSO
estimator as our initial estimator. Consequently, Assumption 13
indicates that p = exp{o(n1/2)}.

The following theorems establish the asymptotic properties
of the adaptive group LASSO estimators. Theorem 4 shows that
the proposed procedure is consistent in both variable selec-
tion and the separation of varying and constant coefficients.
Theorem 5 establishes the convergence rates of the estimators.
Theorem 6 presents the asymptotic normality of the constant-
coefficient estimator.

Theorem 4. Suppose that Assumptions 1–6, 9–13, and model
(14) hold. Then for Âc, Âv in (17), as Ns → ∞ and n → ∞,
Pr(Âc = Ac) → 1, Pr(Âv = Av) → 1.

Theorem 5. Under model (14) and Assumptions 1–6, 9–13, we
have ∑

k∈Ac

(̂αk − α0k)
2

= OP

{
1
n

+ 1
nNs|�|2 + |�|2(d+1) + ρ2

n1 + ρ2
n2

n2N2
s

}
,∑

k∈Av

‖β̂k − β0k‖2
L2(�)

= OP

{
1
n

+ 1
nNs|�|2 + |�|2(d+1) + ρ2

n1 + ρ2
n2

n2N2
s

}
.

Theorem 6. Under model (14) and Assumptions 1–8, 9–13,
as Ns → ∞ and n → ∞, the estimator α̂Ac satisfies that
n1/2 (

α̂Ac − α0,Ac

) D−→ N(0, �−1�e�
−1), where � and �e

are given in (11).

4. Numerical Studies

4.1. Triangulation, d, r, and Tuning Parameter Selection

To apply the bivariate spline smoothing, we need to choose
the triangulation, a notoriously difficult task for nonparametric
smoothing methods. An optimal triangulation is a partition
of the domain which is best according to some criterion that
measures the shape, size or number of triangles. For example,
a “good” triangulation usually refers to those with well-shaped
triangles, no small angles or/and no obtuse angles. Other criteria
include the density control (adaptivity) and optimal size (num-
ber of triangles), etc. For a fixed number of triangles, Lai and
Schumaker (2007) recommended selecting the triangulation
according to max-min criterion which maximizes the minimum
angle of all the angles of the triangles in the triangulation. In our
theoretical studies, we find that the number of bivariate spline
basis functions Jn needs to satisfy Assumption 6 in Section 2.2
and Assumption 13 in Section 3.2. Therefore, in practice, if
the boundary of the spatial domain is not too complicated, we
suggest taking the number of triangles N as the following: N =
min{�c1n1/(2d+2)N1/2

s �, Ns/10} + c2, for tuning parameter c1
(typically, c1 ∈ [0.3, 1] and c2 = 10 work very well in practice).
Once N is chosen, one can build the triangulated meshes using
typical triangulation construction methods such as Delaunay
triangulation.

Next, we discuss how to choose the smoothness r and degree
d for the bivariate splines. For estimation, the proposed spline
method with a higher degree is expected to result in a better
estimation accuracy when the underlying coefficient function
is smooth. According to Lai and Schumaker (2007), for a fixed
r ≥ 1, the bivariate spline achieves full approximation power
asymptotically when d ≥ 3r + 2. However, there are too many
parameters to be estimated if d or r is too large, which may
result in singularities and unnecessary computation burden. In
practice, for some smooth functions without sharp edges as in
the simulation studies, we suggest employing smoothness r = 1
with degree d = 3 or d = 4. On the other hand, if the underlying
coefficient functions are believed to have sharp edges, we suggest
using r = 0 and d = 1 or 2. For model structure identification,
we find the proposed SMILE method is less sensitive to the
choice of r and d compared to the estimation, so we recommend
r = 0 or 1 with d = 1 or 2 to reduce the computational burden.

As for the selection of penalty parameters, we borrow the
idea from Bayesian information criteria widely used in high-
dimensional settings (Wang, Li, and Tsai 2007; Lee, Noh, and
Park 2014). For any penalty parameter ρ = (ρ1, ρ2)

�, let
MSEρ = (nNs)−1 ∑n

i=1
∑Ns

j=1(Yij −μ̂ρ,ij)2 be the mean squared
errors associated with ρ, where μ̂ρ,ij = μ̂ρ,i(sj) is defined
in Remark 3. Let Iρ,c and Iρ,v be identified active constant
and varying index set corresponding to tuning parameter ρ,
respectively. For the selection of the tuning penalty parameters,
we modify the classical BIC rule in the following way to reflect
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the functional data structure:

mBIC1
ρ = log

(
MSEρ

) +
{ |Iρ,c| log(n)

n
+ |Iρ,v|Jn log(nNs)

nNs

}
,

mBIC2
ρ = log

(
MSEρ

) +
{ |Iρ,c| log(p) × log(n)

2n

+ |Iρ,v|Jn log(pJn) × log(nNs)

2nNs

}
.

Theorem S.2 in the supplementary materials shows the consis-
tency of the mBIC1

ρ and mBIC2
ρ under some additional regular-

ity assumptions. In our Monte Carlo simulation studies, we find
that these two criteria give very similar results.

4.2. Simulation Study 1

In this simulation study, we evaluate the performance of the
“oracle” PLSVCM estimator, that is, the estimator proposed in
Section 2 when Ac and Av in model (2) are known. We generate
data at a grid of Ns = n1 × n2 voxels for n subjects. At each
s = (s1, s2)

� in �, Yi(s) is simulated according to

Yi(sj) =
∑

k∈Ac

Xikαk +
∑

k∈Av

Xikβk(sj) + ηi(sj) + εi(sj),

for i = 1, . . . , n and j = 1, . . . , Ns. We take n = 50, 100, and
200, n1 = n2 = 40 and 50, Ac = {1, 2}, and Av = {3, 4}.
We generate Xi1, . . . , Xi4 independently from Unif[−1, 1]. We
consider two scenarios below to illustrate the efficiency of the
proposed estimator for PLSVCM.

• Scenario 1: α1 = α2 = 0;
• Scenario 2: α1 = 1 and α2 = −1.

Note that the PLSVCM is reduced to SVCM in Scenario 1. In
both scenarios, we generate nonzero varying functions in the
quadratic and exponential forms, where β3(s) = 20{(s1 −
0.5)2 + (s2 − 0.5)2}, and β4(s) = exp[−15{(s1 − 0.5)2 + (s2 −
0.5)2}].

To simulate the within-image dependence, for i = 1, . . . , n,
we generate ηi(s) from ηi(s) = ∑2

κ=1
√

λκξiκψκ(s), where for

κ = 1, 2, we generate ξik
iid∼ N(0, 1), ψ1(s) = a1 sin(πs1), and

ψ2(s) = a2{cos(πs2) + a0}. We take a0 = −0.039, a1 = 1.588,
and a2 = 2.157, so that

∫
�

ψ2
1 (s)ds = ∫

�
ψ2

2 (s)ds = 1 and∫
�

ψ1(s)ψ2(s)ds = 0, and the eigenvalues are λ1 = 0.32 and
λ2 = 0.0752.

The errors {ε(s) : s ∈ �} are generated in Gaussian process
with mean zero and standard deviation σε . In addition, we adjust
the values of σε to ensure the signal-noise-ratio (SNR) is close
to 3 and 5 in both scenarios, where the SNR is defined as the
following:

SNR = N−1
s

∑Ns
j=1 var{∑k∈Ac Xikαk + ∑

k∈Av Xikβk(sj)}
N−1

s
∑Ns

j=1 var{ηi(sj) + εi(sj)}
.

To apply our method, we consider a triangulation containing 29
triangles with 28 vertices, and based on this triangulation, we
generate the bivariate spline basis functions with degree d = 3
and smoothness parameter r = 1.

Figure 1. True and estimated varying coefficient functions. β3(·) and β4(·) are
the true varying coefficient functions; β̂3(·) and β̂4(·) are the estimated varying
coefficient functions by SVCM-BST; β̂SVCM−kernel

3 (·) and β̂SVCM−kernel
4 (·) are the

estimates by SVCM-kernel.

Note that the underlying model for Scenario 1 is SVCM,
and in this scenario we compare the proposed BST estima-
tor (SVCM-BST) with the three stage kernel (SVCM-kernel)
method proposed by Zhu, Fan, and Kong (2014). The true sur-
faces and the estimated functions from both methods are shown
in Figure 1. Visually one can see that the estimated functions
from the BST method successfully capture the spatial pattern
of the true functions, while SVCM-kernel fails to capture the
spatial structure and yield a smooth estimate. We evaluate the
methods on the accuracy of coefficient estimation and precision.
To be specific, we compute the mean squared errors (MSEs) to
evaluate the accuracy of estimators, based on 100 Monte Carlo
simulations. The MSEs for the coefficients functions βk(·), k =
3, 4, are computed as the average of N−1

s
∑Ns

j=1{β̂k(sj)−β0k(sj)}2.
Tables 1 and 2 present the MSEs in Scenarios 1 and 2,

respectively. As shown in Tables 1 and 2, with the increase of
sample size, the MSEs of all the estimators decrease significantly
(all the MSE values at n = 200 is less than quarter of the values at
n = 50). While with the increase of pixel size Ns, these values of
MSEs almost keep constant. In addition, as shown in Table 1, the
proposed SVCM-BST method outperforms the SVCM-kernel

Table 1. Mean squared error (MSE ×10−2) of the SVCM-BST and SVCM-kernel
estimators of βk(·), k = 3, 4, for Scenario 1 in Simulation Study 1.

β3(·) β4(·)
Ns n SNR SVCM-BST SVCM-kernel SVCM-BST SVCM-kernel

402 50 3 1.864 3.352 2.623 3.550
5 1.658 2.330 2.425 2.686

100 3 1.028 2.105 0.961 1.595
5 0.933 1.464 0.857 1.080

200 3 0.489 1.277 0.627 1.117
5 0.441 0.854 0.579 0.773

502 50 3 1.725 2.990 2.515 3.371
5 1.598 2.075 2.381 2.550

100 3 0.963 1.800 0.892 1.382
5 0.902 1.275 0.826 0.958

200 3 0.458 1.076 0.596 0.943
5 0.427 0.724 0.565 0.673
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Table 2. Mean squared error (MSE ×10−2) of the PLSVCM-BST estimator for Sce-
nario 2 in Simulation Study 1.

SNR = 3 SNR = 5

Ns n α1 α2 β3(·) β4(·) α1 α2 β3(·) β4(·)
402 50 1.605 1.559 2.077 2.839 1.608 1.553 1.843 2.616

100 0.788 0.767 1.089 1.032 0.789 0.763 0.979 0.914
200 0.387 0.297 0.511 0.649 0.386 0.297 0.456 0.594

502 50 1.588 1.534 1.907 2.707 1.593 1.533 1.762 2.558
100 0.786 0.752 1.007 0.949 0.786 0.752 0.938 0.874
200 0.383 0.294 0.473 0.611 0.382 0.295 0.438 0.576

in terms of MSE, regardless of the settings. The SVCM-kernel
method requires the calculation of spatial similarity distance
and adaptive weights repeatedly, and the estimate is constrained
to uni-scale neighborhood; thus, it cannot efficiently estimate
the coefficient functions. In contrast, our BST method pro-
vides a large amount of flexibility as it allows an easy imple-
mentation of piecewise polynomial representations of various
degrees and smoothness over an arbitrary triangulation. As a
result, it can handle irregularly shaped objects of different visual
qualities.

As for the precision of the estimators, we assess the accuracy
of the standard error (SE) formula of Vc

n given in (12), by
calculating SE from three standards in Scenario 2, as shown in
Table 3. SEmc can be viewed as the true values for SE, which
is the standard deviation of the estimated parameters based on
100 Monte Carlo samples; SEmean and SEmed are the mean and
median of the estimated SE from 100 simulations. We use the
SEIQR to assess the precision of the standard error formula;
specifically, it is calculated by the interquartile range of the
estimated SE from 100 Monte Carlo replications divided by
1.349.

As shown in Table 3, with the increase of sample size, all the
three estimates of SE decreases significantly (all the SE values
at n = 200 is less than half of the values at n = 50), indi-
cating more precise estimates for constant coefficients. While
with the increase of pixel size Ns, these values of SEs almost
keep the same, indicating that the proposed method is stable in
estimation. SEmean and SEmed are very close to SEmc; and with
the increase of sample size, they get closer to the true SE. The
values of the SEIQR are much smaller compared to those of the

other three SEs, which implies the variance of the SE calculated
by our formula is very small. Thus, it is safe to conclude that the
proposed standard error formula provides a stable and accurate
estimate.

4.3. Simulation Study 2

This simulation study is designed to evaluate finite-sample per-
formance of the proposed sparse learning and model structure
identification method. Specifically, we examine the performance
of the double regularization method using an imaging genetic
study, where we focus on learning the changes of genetic (G)
effects under different environmental (E) conditions, that is,
gene-environment (G×E) interaction. We simulate data at all
voxels on a 20 × 20 phantom image for n subjects. At each
s = (s1, s2)

� in �, Yi(s) is simulated according to

Yi(sj) = G�
i f G(sj) + E�

i f E(sj) + (G × E)�i f G×E(sj)

+ ηi(sj) + εi(sj),

i = 1, . . . , n, j = 1, . . . , Ns,

where Gi = (Gi1, . . . , Gip1)
�, f G = (f G

1 , . . . , f G
p1)

� denotes
the genetic factors potentially associated with response vari-
ation (e.g., coded SNP genotypes), Ei = (Ei1, . . . , Eip2)

�,
f E = (f E

1 , . . . , f E
p2)

� denotes the environmental factors (e.g., age,
gender, and medical treatments) that may affect the imaging
measures, and (G × E)i = ((G × E)i1, . . . , (G × E)i,p1p2)

�,
f G×E = (f G×E

1 , . . . , f G×E
p1p2 )� denotes the G×E interaction. Note

that p = p1 + p2 + p1p2 in this study.
We take n = 30, 40, and 50, p1 = 5, 100, 200, and 500,

and p2 = 3. As for the active index sets, we set AG
c = {1},

AG
v = {2}, NG = {3, . . . , p1}, AE

c = {1}, AE
v = {2}, N E = {3},

AG×E
c = {1}, AG×E

v = ∅, NG×E = {2, . . . , p1p2}. The nonzero
functions f G

1 (s), f E
1 (s), and f G×E

1 (s) are linear, and f G
2 (s) and

f E
2 (s) are varying functions; that is, f G

1 (s) = αG
1 , f G

2 (s) = βG
2 (s),

f E
1 (s) = αE

1 , f E
2 (s) = βE

2 (s), and f G×E
1 (s) = αG×E

1 . We take
αG

1 = 2, αE
1 = 1, and αG×E

1 = 1.5. The varying functions and
the within-image errors {η(s) : s ∈ �} are randomly generated

Table 3. Standard errors of the constant coefficients estimator for Scenario 2 in Simulation Study 1.

α1 α2

Ns n SNR SEmc SEmean SEmed SEIQR SEmc SEmean SEmed SEIQR

402 50 3 0.1253 0.1214 0.1211 0.0118 0.1240 0.1218 0.1215 0.0117
5 0.1254 0.1212 0.1208 0.0115 0.1238 0.1216 0.1215 0.0116

100 3 0.0885 0.0856 0.0858 0.0053 0.0876 0.0856 0.0855 0.0060
5 0.0886 0.0856 0.0857 0.0055 0.0873 0.0855 0.0854 0.0062

200 3 0.0610 0.0607 0.0604 0.0029 0.0540 0.0607 0.0604 0.0030
5 0.0609 0.0606 0.0603 0.0029 0.0541 0.0606 0.0604 0.0029

502 50 3 0.1245 0.1208 0.1208 0.0113 0.1230 0.1212 0.1215 0.0111
5 0.1247 0.1207 0.1206 0.0114 0.1230 0.1211 0.1216 0.0111

100 3 0.0884 0.0854 0.0855 0.0058 0.0867 0.0853 0.0854 0.0064
5 0.0884 0.0853 0.0854 0.0057 0.0867 0.0852 0.0853 0.0063

200 3 0.0608 0.0604 0.0601 0.0028 0.0538 0.0604 0.0602 0.0029
5 0.0607 0.0604 0.0600 0.0028 0.0539 0.0604 0.0601 0.0028

SEmc, the standard deviation of estimated parameters based on 100 Monte Carlo samples (can be viewed as the true values for SE); SEmean, mean of the estimated SE from
100 simulations; SEmed, median of the estimated SE from 100 simulations; SEIQR, interquartile range of the estimated SE from 100 Monte Carlo replications divided by
1.349.
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from Matérn processes with covariance

C(‖s − s′‖; σ 2
s , θ , ν) = σ 2

s
2ν−1�(ν)

(√
2ν‖s − s′‖

θ

)ν

�ν

×
(√

2ν‖s − s′‖
θ

)
,

where � is the gamma function, �ν is the modified Neumann
function, σ 2

s is the sill, and θ is the range parameter. The Matérn
process is very flexible family of stationary processes which
produce more realistic structures for biological applications,
as compared to Brownian motion or simple low dimensional
structures. In our simulation, the nonzero varying functions are
generated with parameters (σs = 1, θ = 1/4, ν = 5/2), and η(s)
is generated in the same way but with parameters (σs = 1, θ =
1/4, ν = 3/2), which results in the within-image errors less
smooth than the parameter functions. The errors {ε(s) : s ∈ �}
are generated in Gaussian process with mean zero and standard
deviation 1.5 and 2.2.

The covariates are simulated as follows. First, we generate G̃ik,
k = 1, . . . , p1, Ui, and Ũi independently from standard uniform
distribution, i = 1, . . . , n. Then we set G0

ik = (G̃ik + tUi)/(1+ t)
for k ∈ AG

c ∪ AG
v , and G0

ik = (G̃ik + tŨi)/(1 + t) for k /∈
AG

c ∪ AG
v , where the parameter t controls the correlation. To

be specific, corr(G0
ik, G0

ik′) = t2/(1 + t2) for k, k′ ∈ AG
c ∪ AG

v ,
corr(G0

ik, G0
ik′) = t2/(1+ t2) for k, k′ /∈ AG

c ∪AG
v , and the active

and inactive covariates are independent. Here we consider t =
1. This generating method of G0

ik is the same as Example 1 of
Huang, Horowitz, and Wei (2010). To mimic the genetic factors
in real data, we set Gik = 0 if G0

ik ≤ 1/3, Gik = 1 if 1/3 < G0
ik ≤

2/3, and Gik = 2 otherwise. Section S.9 of the supplementary
materials provides another simulation study when all covariates
in G part are correlated.

As for the Ei, we generate Ei1 independently from N(0, 1),
Ei2 independently from a Bernoulli distribution with success
rate 0.5, and sample Ei3 independently from {1, 2, 3} with equal
probability. In this example, the SNR is nearly 1 and 3, where the
SNR is defined

SNR =
N−1

s
∑Ns

j=1 var{G�
i f G(sj) + E�

i f E(sj)

+(G × E)�i f G×E(sj)}
N−1

s
∑Ns

j=1 var{ηi(sj) + εi(sj)}
.

To approximate the varying coefficient functions, in the
selection part, we use the normalized bivariate spline basis func-
tions, with smoothness degree d = 2, smoothness constraint
r = 1, and 29 triangles; and in the estimation part, to get better
estimation results, we use the bases with d = 3, r = 1, and 29
triangles. For the selection of penalty parameters, we consider
the modified BIC presented in Section 4.1. The simulation
results are similar based on these criteria, so in the following,
we choose ρ1 by mBIC1 and ρ2 by mBIC2 for illustration.

We adopt the following criteria to evaluate the methods
on the accuracy of variable selection, model identification and
prediction:

(B-i) The average percentage of nonzero constant coefficients
correctly identified as nonzero constant (“TC”);

(B-ii) The average percentage of nonzero varying coefficient
functions correctly identified as nonzero varying func-
tions (“TV”);

(B-iii) The average percentage of true zero functions correctly
identified as zero (“TN”);

(B-iv) The average number of covariates with nonzero con-
stant coefficients or nonzero varying functions incor-
rectly identified as having both zero linear and zero
varying functions (“FN”);

(C-i) Mean integrated squared errors (“MISE”), defined as
the average of

∑n
i=1

∑Ns
j=1{μ̂i(sj) − μi(sj)}2/(nNs) over

100 simulations, where μi(·) is the conditional mean
function for the ith subject, i = 1, . . . , n.

All these performance measures are computed based on 100
replicates. Note that Criteria (B-i)–(B-iii) measure the frequency
of getting the correct model structure; Criterion (B-iv) measure
the frequency of getting an incorrect model structure; Criterion
(C-i) focuses on the estimation and prediction accuracy for the
model components. To evaluate the estimation accuracy, we
compare the proposed SVCM method (SMILE) with the oracle
PLSVCM-BST estimator, which all active and inactive index
sets are treated as known. In this simulation study, the oracle
PLSVCM-BST estimator works as a benchmark for estimation
comparison. In the setting of p1 = 5, we also compare with the
SVCM-BST estimator, which ignores the identification of active
index set and potential constant structure, and estimates with all
covariates in a varying form. Note that SVCM-BST estimator is
not applicable for high-dimensional settings, such as p1 = 100,
200, or 500.

The true surfaces and the estimated functions are shown
in Figure 2. Visually one can see that the estimated functions
successfully capture the spatial pattern of the true functions.

The model selection results are provided in Table 4. The
SMILE method can effectively identify informative constant and
varying components in genetic markers (G part) and environ-
mental factors (E part) as well as correctly discover the constant
and varying spatial structure for their interactive effects (G×E
part), regardless of the dependence structure. The proportions
of correctly selected nonzero constant and varying components,
for G, E, and G×E parts, are very close to perfect conditions
(nearly 100% for TC, TV, and TN) in most cases, except for
the cases with really small sample size, weak signal and large
dimension; and the proportions increase to 100% as n increases
and/or the SNR increases. The numbers of incorrectly identified
components approach to zero as n increases and/or the SNR
increases. The selection performance of the proposed method
is great even with moderately large sample size and SNR.

The estimation results are displayed in Table 5. Specifically,
we present the MISEs for estimators of the conditional mean
functions. The case with known active covariates (“ORACLE”)
is reported in each setting and serves as a gold standard. In the
setting of p1 = 5, the results of the SVCM-BST estimator is also
presented. In this setting, the proposed SMILE performs much
better than the SVCM-BST, as indicated by MISEs, and is much
closer to ORACLE, regardless of the SNR level and sample size n.
That means, compared to the SVCM-BST that puts all covariates
into the model fitting, the proposed SMILE method is able to
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Figure 2. True and estimated varying coefficient functions.

Table 4. Selection statistics of the proposed method in Simulation Study 2.

G Part E Part G×E Part

n SNR p1 TC TV TN FN TC TV TN FN TC TN FN

30 1 5 99 100 100 0.01 93 100 100 0.07 96 100 0.01
100 92 53 100 0.55 66 61 100 0.73 85 100 0.08
200 85 28 100 0.87 36 36 100 1.28 63 99.992 0.15
500 71 9 100 1.2 31 19 100 1.5 54 99.996 0.29

3 5 100 96 100 0.04 98 100 100 0.01 99 100 0
100 98 96 100 0.06 85 97 100 0.18 92 99.990 0.02
200 92 88 99.995 0.2 59 92 100 0.49 78 99.983 0.08
500 88 77 99.994 0.35 48 81 100 0.71 73 99.989 0.12

40 1 5 99 100 100 0.01 98 100 100 0.02 99 100 0.01
100 100 97 100 0.03 83 99 100 0.18 95 99.997 0
200 99 94 100 0.07 80 97 100 0.23 93 99.998 0.01
500 93 75 100 0.32 65 78 100 0.57 83 99.998 0.07

3 5 100 91 100 0.09 100 100 100 0 100 100 0
100 100 100 100 0 94 100 100 0.06 97 99.993 0
200 100 100 100 0 86 100 100 0.14 96 99.997 0
500 96 98 99.998 0.06 78 98 100 0.24 91 99.996 0.04

50 1 5 100 100 100 0 100 100 100 0 100 100 0
100 100 100 100 0 96 100 100 0.04 100 100 0
200 99 100 100 0.01 93 100 100 0.07 99 99.998 0.01
500 100 100 100 0 93 100 100 0.07 99 99.999 0

3 5 100 100 100 0 100 100 100 0 100 100 0
100 100 99 100 0.01 99 100 100 0.01 100 100 0
200 100 100 100 0 98 100 100 0.02 100 99.998 0
500 100 100 100 0 98 100 100 0.02 99 99.999 0

TC, the average percentage of nonzero constant coefficients correctly identified as nonzero constant; TV, the average percentage of nonzero varying coefficient functions
correctly identified as nonzero varying functions; TN, the average percentage of true zero functions correctly identified as zero; FN, the average number of covariates
with nonzero constant coefficients or nonzero varying functions incorrectly identified as having both zero linear and zero varying functions.

Table 5. Mean integrated squared error (MISE) of proposed SMILE estimator, the
unpenalized SVCM-BST estimator and the ORACLE for the mean function in Simu-
lation Study 2.

SNR = 1 SNR = 3

n p1 SMILE SVCM-BST ORACLE SMILE SVCM-BST ORACLE

30 5 0.314 2.064 0.207 0.164 1.318 0.141
100 1.190 – 0.208 0.442 – 0.142
200 2.029 – 0.207 0.931 – 0.141
500 2.913 – 0.220 1.330 – 0.152

40 5 0.197 1.550 0.154 0.122 0.988 0.104
100 0.364 – 0.158 0.194 – 0.108
200 0.416 – 0.156 0.239 – 0.106
500 1.012 – 0.155 0.484 – 0.106

50 5 0.125 1.245 0.125 0.086 0.798 0.086
100 0.155 – 0.124 0.094 – 0.084
200 0.223 – 0.127 0.101 – 0.086
500 0.183 – 0.127 0.105 – 0.088

The SVCM-BST method with a fixed dimension is not applicable for p1 = 100, 200,
or 500, and for those cases “–” is used to indicate that results are not available.

correctly identify the active set and the model structure and lead
to more accurate estimation for the conditional mean functions,
even though it is subject to the bias of the variable selection. The
results show the necessity of conducting variable selection and

model identification, even in the case that p < n. When p1 is
much larger than the sample size n, the MISEs of the proposed
method (SMILE) are slightly higher than those of the oracle
estimators in the cases with moderate large sample size and/or
SNR; while in the cases with small sample size, weak signal
and large dimension, the estimates of the proposed SMILE has
larger MISEs, restricted to the selection bias. Our estimates for
the conditional mean functions are getting closer to the oracle
estimators as sample size increases and the signal strengthens,
which indicates the accuracy of the proposed method in esti-
mation.

5. ADNI Data Analysis

We illustrate the application of our proposed method in the
ultrahigh-dimensional setting by using the fludeoxyglucose
positron emission tomography (PET) data of ADNI, which is
publicly available and accessible through http://adni.loni.usc.
edu/.

Single nucleotide polymorphisms (SNPs) and other poly-
morphisms in several genes, including apolipoprotein E

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Table 6. Distribution of patients by sex and diagnosis status.

Diagnosis status

Sex CN MCI AD Total

Male 68 111 67 246
Female 39 44 45 128

Total 107 155 112 374

CN, cognitive normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

(APOE), have been demonstrated to be related to neuroimaging
measures in brain disorders, such as mild cognitive impairment
(MCI) and Alzheimer’s disease (AD) (see, e.g., Ashford and
Mortimer 2002). However, it is of great interest to identify other
genes that play a role in the development and progression of
MCI and AD. Here, we handle all the predictors (e.g., envi-
ronmental/genetic factors and their interactions) jointly when
investigating the association between imaging responses and
scalar predictors. We develop an efficient method for G×E
interaction identification to address the high-dimensionality of
both the imaging and genomic data (Stein et al. 2010). Although
interaction selection has drawn much attention in the literature
(Hao and Zhang 2014; Kong et al. 2017; Li and Liu 2019),
effectively relating hundreds of thousands of predictors to large-
scale imaging data remains a challenging task.

This dataset is collected from 374 subjects. The data for
each subject includes a spatially normalized PET image with
79×95 pixels, age, gender, cognitive impairment status, dummy
variables of the number of copies of the epsilon 4 allele of APOE
gene (APOE2 as a dummy variable for subjects with two epsilon
4 alleles, and APOE1 for those with one epsilon 4 allele), which is
the strongest known genetic risk factor for AD, and other SNP
genotypes at 620,901 loci. The original PET images are three-
dimensional, and we focus on the 48th horizontal section of
the brain from the bottom at the Corpus Callosum level. As
stated in Marcus, Mena, and Subramaniam (2014), the two-
dimensional image in this section cuts through the frontal and
parietal lobes, which include many areas that may be altered
in subjects with AD and/or dementia. The PET measurements
ranged from −0.11 to 2.15, and the subjects’ ages ranged from
56 to 89 years. Table 6 gives the distribution of patients by sex
and diagnosis status.

We apply the proposed SVCM to capture important patient-
level features that are associated with the variation of the PET
images, identify the model structure (i.e., the features with
varying or constant coefficients), and detect the association.
We consider demographic variables including age and gender,
dummy variables of AD and MCI, genetic information such as
SNPs, and their interaction as possible features in our analysis.

To be specific, we first perform a nonparametric indepen-
dence screening in VCMs (Fan, Ma, and Dai 2014) to SNP
genotypes to reduce the computational burden, using piece-
wise constant bivariate splines over a triangulation with 1106
triangles and 596 vertices, as shown in the top-left corner of
Figure 3. We select 40 SNPs that have the strongest associations
with the image response conditional on age, gender, impair-
ment status, and APOE genotype. Next, we apply our proposed
SMILE method for (14) to model the relationship between the
brain image response and 245 predictors, which consist of 40

Table 8. Selected features with main or interaction effect for the ADNI data.

× (Interaction) (Main) MCI AD Age Sex APOE1 APOE2

(Main) � � � �
rs1445493 �
rs1541312 � �
rs2131771 � � �

SNP rs2955551 �
rs7556318 � �
rs8182037 � � � � �
rs10935030 �
rs10955341 � �

The “�” indicates the existence of either main or interaction effect.

selected SNP genotypes, along with age, gender, impairment
status, APOE genotypes and their interactions. Note that for this
setting, both of the SVCM-BST and SVCM-kernel fail in the
regression, because of the memory limit. For selection, we use
bivariate splines generated with degree d = 2 and smoothness
parameter r = 1, and over a triangulation with 174 triangles
and 28 vertices. Then we refit the model with those selected
predictors using a finer triangulation with 1106 triangles and
596 vertices.

Tables 7 and 8 provide the information of the selected
SNPs and covariates, respectively. Table 7 reports the chromo-
some information, physical position and gene information for
selected SNPs with main or interaction effect. Table 8 lists the
selected features with main or interaction effect for the ADNI
data, where the checkmark indicates the existence of either main
or interaction effect. For example, feature “age” has both main
effect and interaction effect with SNP “rs8182037.” The pro-
posed SMILE method selects 10 main factors, including MCI,
AD, age, APOE2, and 6 SNPs; in addition, 11 G×E interaction
factors are also selected.

All the 21 selected features are in spatially varying form, and
the corresponding estimated coefficient functions are shown in
Figure 3. The intercept image shows the PET image from a male
normal individual, excluding effects from other features. The
main effect of AD on PET image decreases 0.02–0.05 in the
frontal lobe and parietal lobe. Compared to AD, the main effect
of MCI has an increase of 0.1–0.15 in some spots in the frontal
lobe near the longitudinal fissure. The main effect of age shows a
decrease of 0.1 in every 20 years, in the frontal lobe and parietal
lobe near the longitudinal fissure. APOE2 has a different pattern
with age and AD. There is an increase of 0.03–0.05 in the parietal
lobe and frontal lobe near the longitudinal fissure. Most of the
interaction terms with SNPs also show a decrease in the frontal
lobe and/or parietal lobe, except for the interaction terms Sex
by SNPs “rs8182037” and “rs10955341.” These two terms show
that female with high B allele frequency in “rs8182037” and
“rs10955341” have an increase of 0.04–0.05 in the frontal lobe
and parietal lobe.

6. Discussion

In this article, we consider the imaging-on-scalar regression
with ultrahigh-dimensional scalar predictors. We have pro-
posed a unified approach to perform estimation, variable
selection and model structure identification simultaneously
for bivariate functional responses with scalar covariates. FDA
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Table 7. The chromosome information, physical position and gene information for selected SNPs with main or interaction effect.

SNP CHR BP Gene SNP CHR BP Gene

rs1445493 8 9018773 rs7556318 1 87422453
rs1541312 22 21000081 BMS1P20 rs8182037 15 73921656 UBE2Q2
rs2131771 11 12210124 MICAL2 rs10935030 3 133929794 NPHP3-AS1
rs2955551 8 8160844 rs10955341 8 105229526 RIMS2

CHR, chromosome; BP, physical position.

Figure 3. The estimated coefficient functions of features for the ADNI data.
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methods have been widely studied in the literature, however,
most focus on univariate functional responses, or bivariate func-
tional responses (on rectangular domain) with fixed number of
predictors. Little has been done on the development of advanced
statistical methods to analyze complex functional data in high-
dimensional setting. Thus, our work is novel, and it also has
merits in the following aspects.

From a methodology point of view, our proposed procedure
greatly enhances the capability of FDA in modern applications
such as imaging genetics. We have successfully addressed the
following challenges when analyzing next-generation functional
data with complex data objects: (i) spatial smoothing over
complex domains, (ii) high-dimensional functional responses,
(iii) ultrahigh-dimensional covariates (such as high-throughput
genotyping). Our article also enriches the methodological stud-
ies on cutting edge smoothing and estimation techniques to
solve the problem of “leakage” in difficult regions.

In terms of theoretical innovations, we have shown that the
proposed method has several desirable statistical properties.
When the active constant varying index sets are known, we have
established the consistency and asymptotic normality of the
estimators for the coefficient parameters. We have also provided
an asymptotic formula for estimating the standard errors of the
coefficient estimates. With the availability of the asymptotic nor-
mality, one can easily devise a Wald-type of testing procedure for
the coefficient parameters. In addition, we have derived model
selection consistency for the proposed method and shown that it
possesses the oracle property when the dimension of covariates
exceeds the sample size. In addition, we have shown the estima-
tors of the constant and varying coefficient are asymptotically
normal under some regularity conditions.

In this article, we have conducted the GEWAS in neuroimag-
ing genetics, where changes of genetic (G) effects under different
environmental (E) conditions, that is, the G×E interaction, has
been investigated. Thus, from an application point of view, our
work has a direct impact on those biomedical imaging studies.
In addition, the proposed SMILE method inherits the compu-
tational efficiency of the global smoothing methods, so that we
can deal with large datasets with thousands of predictors, high-
dimensional imaging data and a potentially large number of
subjects within minutes.

A few more issues still merit further research. For instance,
our method can be immediately extended to accommodate
more complex data structures, such as three-dimensional
images, by considering a functional linear regression model with
trivariate functional responses, to fulfill the usefulness of the
whole three-dimensional spatial information. Due to technical
reasons, imaging data often have different modalities, for exam-
ple, functional magnetic resonance imaging, diffusion tensor
imaging, PET, computed tomography, ultrasonic imaging, and
X-ray. It is interesting to examine the effect of the degree param-
eter d and smoothness parameter r of the BST smoothing on
the performance of the proposed method for different types of
imaging data.

Supplementary Materials

In the supplemental materials, we provide the technical proofs for the main
theorems and additional simulation studies.
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